Artificial intelligence and machine learning in neurosurgery: A review of diagnostic significance and treatment planning efficiency

Author:

Ahmad Rani G.1

Affiliation:

1. Department of Radiology, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

This review analyzes the significance of artificial intelligence (AI) and deep learning (DL) approaches used in radiology in neurosurgery patients and compares AI applications with human models to determine the applicability of AI in disease diagnosis, decision-making, and outcome prediction. A systematic review was conducted from 1997 to 2020 from the PubMed (MEDLINE) database. The search strategy adhered to guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The keywords used for the literature search included “Deep learning,” “Neurosurgery,” “Artificial Intelligence,” “Brain,” “Magnetic resonance imaging-MRI Brain,” and “Machine learning.” The studies focusing on the significance of DL and comparing AI applications with radiologists or clinical experts to enhance diagnostic protocols were included, whereas non-English articles, animal studies, articles lacking full text, and publications such as commentaries, technical notes, abstracts, editorials, opinions, and letters were excluded. A total of 24 articles were included in the review. The P value was observed in 44 out of 63 outcome measures (70%), out of which in 26 out of 63 outturn measures, artificial application subset machine learning (ML) has a significant edge over clinical diagnosis (P < 0.05). The review highlights the potential impact of AI-driven advancements in clinical radiology on enhancing treatment plans for neurosurgery patients, emphasizing the benefits of early intervention, cost reduction, time-saving approaches, and judicious health-care resource utilization. The study’s limitations include potential constraints in identifying relevant literature due to the selected search scope and inclusion criteria, not including studies published outside the specified timeframe and database, and a small number of included studies. Consequently, there is a risk of overlooking innovative methodologies or ground-breaking studies contributing to a more comprehensive understanding of AI applications in neurosurgery. Furthermore, the exclusion of certain publication types, such as commentaries, and conference papers may limit the diversity of different perspectives. However, the study highlights the potential of ML in neurosurgery and the importance of addressing variability in study design, patient populations, and outcome measures in future research to enhance the applicability of AI-driven approaches in clinical practice. It is imperative to recognize and address these challenges to understand the opportunities and limitations inherent in the integration of AI in neurosurgical practice.

Publisher

Medknow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3