Author:
Koura Rabab Ahmed,Basiouny Iman Mostafa,Doss Reham William,Mostafa Alshimaa Mohamed Abbas,Arafa Ahmed EmadEldin
Abstract
Abstract
Background
Vitiligo is characterized by loss of epidermal melanocytes. Alterations in melanocytes in extracutaneous sites have been reported in vitiligo and sometimes implied for the inner ear along with an associated compromise in function.
Aim
The aim of this study was to map the auditory and vestibular functions in patients with vitiligo.
Materials and methods
A total of 30 patients with vitiligo vulgaris and 30 age-matched and sex-matched healthy controls were enrolled in this study. Pure tone audiometry and measurements of auditory brainstem responses, cervical vestibular-evoked myogenic potential (cVEMP), and videonystagmography (VNG) were carried out in all participants.
Results
Mean hearing thresholds of patients with vitiligo were highly statistically significantly lowered at 4 and 8 kHz than the controls. Analysis of brainstem auditory-evoked potentials (BAEP) revealed statistically significantly prolonged wave III, wave V, and interpeaks of I–III and I–V latencies in both ears of 18 (60%) patients and in the left ear of two (6.6%) patients in the vitiligo group than the controls. VNG findings showed canal paresis in nine (30%) patients. There was a negative statistically significant correlation between disease duration and pure tone audiometry, BAEP, and latency of N23 of cVEMP.
Conclusion
This study sheds light on the importance of melanocytes for proper functioning of the auditory and vestibular system. The presence of high-frequency hearing loss, BAEP abnormalities, and cVEMP changes are valuable findings in patients with vitiligo. This highlights the importance of follow-up along the disease course for early detection of auditory abnormality. cVEMP testing can be used for the evaluation of the vestibulocolic reflex in patients with vitiligo. Moreover, VNG testing can be an important tool for assessment of the vestibular system in patients with vitiligo.
Publisher
Springer Science and Business Media LLC