Author:
Annapurna N. V.,Goud N. Rohit,Nadella Swathi
Abstract
Sterilization is the backbone of a health-care organization and ensures high-quality patient care. While the horizon of medical and surgical devices has undergone vast expansions, not many discoveries have been made as far as novel sterilization procedures are concerned. Steam sterilization remains the most widely used modality of sterilization of equipment to date in most health-care organizations. Its limitation lies in the fact that there are many medical and surgical devices in the market today which are heat and pressure sensitive and can be damaged by the high temperature and pressure levels of steam sterilization. Novel sterilization techniques which are helpful in the sterilization of such sensitive instruments that are being widely used today include ethylene oxide (ETO) gas sterilization and plasma sterilization. ETO sterilization requires the instruments to undergo aeration after the sterilization process, which takes a significant amount of time. Since the sterilized materials can be used only after the aeration period, stocking up of medical instruments is required which incurs extra cost and entails further investment in this regard. In the last few decades, there have also been concerns over the safety of ETO gas itself. Hence, attention has shifted to plasma sterilization which has spiked the interest of medical professionals due to both its safety and economic running costs. This article reviews the evolution of plasma sterilization along with its working principle, methods of inactivation of microorganisms, advantages, and disadvantages. A literature search using the keywords “plasma sterilization” was carried out in PubMed and Google Scholar platforms. Out of the suggestions available, the search was zeroed down to the most relevant articles and a few landmark articles, with focus on the origin of plasma sterilization as a procedure, methods of generation of gas plasma, phases of plasma sterilization, and antimicrobial properties of plasma. A review of articles comparing the efficacy of steam sterilization, ETO sterilization, and plasma sterilization was performed. Standard textbooks, as cited in the references, were referred to as required. The operation and maintenance instruction manual for low-temperature hydrogen peroxide sterilizer ACTIPLAZ
R
model HP-3041, Hanshin Medical Co. Ltd, South Korea, 2019, was used as the primary reference when describing the working of the aforementioned model (HP-3041) of plasma sterilizer.
Reference41 articles.
1. Costs of low-temperature plasma sterilization compared with other sterilization methods;Adler;J Hosp Infect,1998
2. Ethylene oxide dermatitis;Fisher;Cutis,1984
3. Possible relationship of ethylene oxide exposure to cataract formation;Jay;Am J Ophthalmol,1982
4. Acute ethylene oxide intoxication;Salinas;Drug Intell Clin Pharm,1981
5. The toxicity of ethylene oxide and a report on three fatal cases of poisoning;Marchand;Am Arch Indust Health,1958
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献