Resurgence of Plasma Sterilization

Author:

Annapurna N. V.,Goud N. Rohit,Nadella Swathi

Abstract

Sterilization is the backbone of a health-care organization and ensures high-quality patient care. While the horizon of medical and surgical devices has undergone vast expansions, not many discoveries have been made as far as novel sterilization procedures are concerned. Steam sterilization remains the most widely used modality of sterilization of equipment to date in most health-care organizations. Its limitation lies in the fact that there are many medical and surgical devices in the market today which are heat and pressure sensitive and can be damaged by the high temperature and pressure levels of steam sterilization. Novel sterilization techniques which are helpful in the sterilization of such sensitive instruments that are being widely used today include ethylene oxide (ETO) gas sterilization and plasma sterilization. ETO sterilization requires the instruments to undergo aeration after the sterilization process, which takes a significant amount of time. Since the sterilized materials can be used only after the aeration period, stocking up of medical instruments is required which incurs extra cost and entails further investment in this regard. In the last few decades, there have also been concerns over the safety of ETO gas itself. Hence, attention has shifted to plasma sterilization which has spiked the interest of medical professionals due to both its safety and economic running costs. This article reviews the evolution of plasma sterilization along with its working principle, methods of inactivation of microorganisms, advantages, and disadvantages. A literature search using the keywords “plasma sterilization” was carried out in PubMed and Google Scholar platforms. Out of the suggestions available, the search was zeroed down to the most relevant articles and a few landmark articles, with focus on the origin of plasma sterilization as a procedure, methods of generation of gas plasma, phases of plasma sterilization, and antimicrobial properties of plasma. A review of articles comparing the efficacy of steam sterilization, ETO sterilization, and plasma sterilization was performed. Standard textbooks, as cited in the references, were referred to as required. The operation and maintenance instruction manual for low-temperature hydrogen peroxide sterilizer ACTIPLAZ R model HP-3041, Hanshin Medical Co. Ltd, South Korea, 2019, was used as the primary reference when describing the working of the aforementioned model (HP-3041) of plasma sterilizer.

Publisher

Medknow

Reference41 articles.

1. Costs of low-temperature plasma sterilization compared with other sterilization methods;Adler;J Hosp Infect,1998

2. Ethylene oxide dermatitis;Fisher;Cutis,1984

3. Possible relationship of ethylene oxide exposure to cataract formation;Jay;Am J Ophthalmol,1982

4. Acute ethylene oxide intoxication;Salinas;Drug Intell Clin Pharm,1981

5. The toxicity of ethylene oxide and a report on three fatal cases of poisoning;Marchand;Am Arch Indust Health,1958

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3