Evaluation of 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide method for assessing biofilm formation in vitro by Trichosporon spp.

Author:

Premamalini Thayanidhi1,Anitha Subramanian1,Mohanapriya Kanniappan1,Kindo Anupma Jyoti1

Affiliation:

1. Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India

Abstract

ABSTRACT BACKGROUND: Invasive infections due to Trichosporon spp. have increased recently and are frequently associated with indwelling medical devices. Such infections which are associated with biofilm formation do not respond to the routinely used antifungal agents and are often persistent, associated with high mortality rate. Various methods have been described by researchers to evaluate and quantify the biofilm formation. AIM: This study was conducted to compare two methods of biofilm production by Trichosporon sp, i.e., test tube method with crystal violet (CV) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. MATERIALS AND METHODS: Seventy-two clinical isolates of Trichosporon spp. collected from various sources were considered for the study. The identity of all the isolates was genotypically confirmed by Trichosporon-specific polymerase chain reaction (PCR). The isolates were further speciated phenotypically using biochemical profile and growth characteristics which identified the isolates as Trichosporon asahii (64/72), Trichosporon asteroides (5/72), Trichosporon cutaneum (2/72), and Trichosporon mucoides (1/72). Biofilm production was then evaluated and compared by test tube-CV method and MTT assay. RESULTS: All the Trichosporon isolates produced biofilm by MTT assay, whereas only 42 (53.6%) of the isolates were detected to be biofilm producers by CV method. Furthermore, MTT assay could differentiate better between weak and moderate biofilm producers as compared to CV method. CONCLUSION: Hence, MTT assay is a reliable method for quantification of biofilm produced by Trichosporon spp. using 96-well microtiter plate.

Publisher

Georg Thieme Verlag KG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3