On some arithmetic questions of reductive groups over algebraic extensions of local and global fields
-
Published:2023-01-11
Issue:1
Volume:99
Page:
-
ISSN:0386-2194
-
Container-title:Proceedings of the Japan Academy, Series A, Mathematical Sciences
-
language:
-
Short-container-title:Proc. Japan Acad. Ser. A Math. Sci.
Author:
Thắng Nguyễn Quốc
Subject
General Mathematics
Reference31 articles.
1. N. Q. Thắng, On Galois cohomology of semisimple groups over local and global fields of positive characteristic, III, Math. Z. 275 (2013), no. 3–4, 1287–1315. 2. J.-L. Colliot-Thélène, P. Gille and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. 3. J.-L. Colliot-Thélène and J.-J. Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229. 4. N. Q. Thắng, Weak approximation, $R$-equivalence and Whitehead groups, in Algebraic $K$-theory (Toronto, ON, 1996), 345–354, Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI, 1997. 5. N. Q. Thắng, Tate-Shafarevich kernel, weak Brauer and $R$-equivalence on connected reductive groups over local and global fields, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 3, 1009–1070.
|
|