Concordant pairs in ratios with rank at least two and the distribution of $\theta$-congruent numbers
-
Published:2022-04-11
Issue:4
Volume:98
Page:
-
ISSN:0386-2194
-
Container-title:Proceedings of the Japan Academy, Series A, Mathematical Sciences
-
language:
-
Short-container-title:Proc. Japan Acad. Ser. A Math. Sci.
Author:
Dimabayao Jerome Tomagan
Subject
General Mathematics
Reference12 articles.
1. T. Abe, A. Rajan and F. Ramaroson, A few remarks on congruent numbers, Rocky Mountain J. Math. 39 (2009), no. 4, 1083–1088.
2. M. A. Bennett, Lucas’ square pyramid problem revisited, Acta Arith. 105 (2002), no. 4, 341–347.
3. C. T. Davis, On the distribution of rank two $\tau$-congruent numbers, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 5, 37–40.
4. M. Fujiwara, $\theta$-congruent numbers, in Number theory (Eger, 1996), 235–241, de Gruyter, Berlin, 1998.
5. B.-H. Im, Concordant numbers within arithmetic progressions and elliptic curves, Proc. Amer. Math. Soc. 141 (2013), no. 3, 791–800.