Characterization of Voltage Generation Obtained from Water Droplets on a Taro Leaf (Colocasia esculenta L) Surface

Author:

Marlina Ena,Alhikami Akhmad Faruq,Negara Metty Trisna,Sahwahita Sekar Rahima,Basjir Mochammad

Abstract

Voltage generation was obtained using a water droplet characterization on a taro (Colocasia esculenta L) leaf surface. This method relies on the superhydrophobic effect from the contact angle between the water droplet and the taro leaf’s surface allowing electron jumping and voltage generation. Water droplets were dropped on the top of taro leaf surface equipped with aluminum foil underneath as an electrode. The voltage was measured at various slope angles of 20°, 40° and 60° in a real-time basis. A digital camera was used to capture the droplet movement and characterization. It is found that the taro leaf has a surface morphology of nano-sized pointed pillars which created a superhydrophobic field. The energy generation was primarily obtained from the electron jump which was caused by the surface tension of the nano-stalagmite structure assisted by the minerals contained in the taro leaf surface. The results reported that the smaller the droplet radius (the smaller the droplet surface area), the greater the droplet surface tension and the greater the voltage generation. Furthermore, the highest voltage generation was obtained 321.2 mV at 20°-degree angle of slopes.

Publisher

UIR Press

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3