Identification of Risk Factors in the Software Design Stage Using the C4.5 Algorithm

Author:

Azkiya M. Akiyasul,Maulita Deva Sindi,Jumanto

Abstract

A strong design phase is necessary for good software. However, design errors in software can cause serious issues with its creation and use. Therefore, the goal of this study is to find risk variables that could have an early impact on software development. In this study, a machine learning technique called technique C4.5 is employed to create decision tree models. 100 respondents with software design experience participated in the online surveys and questionnaires that collected the data for this study in 2022. The C4.5 Algorithm was used in this study to analyze the data and determine the risk variables that affect the success of software design. The study's findings show that the C4.5 Algorithm-based model has a high level of accuracy (93.33%), which means that the data can offer crucial insights into understanding potential risks that may arise during the software design stage, enabling software developers to take the necessary precautions to lessen or eliminate these risks. In order to enhance the caliber and effectiveness of software design, this research is anticipated to provide a significant contribution to practitioners and academics in the field of software development.

Publisher

UIR Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3