LVAD Inflow Cannula Covered with a Titanium Mesh Induces Neointimal Tissue with Neovessels

Author:

Miyamoto Takuma1,Nishinaka Tomohiro1,Mizuno Toshihide2,Tatsumi Eisuke2,Yamazaki Kenji1

Affiliation:

1. Department of Cardiovascular Surgery, Tokyo Women's Medical University, Shinjuku, Tokyo - Japan

2. Department of Artificial Organs, National Cerebral and Cardiovascular Center, Suita, Osaka - Japan

Abstract

Background Thrombus formation at the interfaces of inflow cannulas and left ventricular apexes is considered to be one of the predominant sources of thromboembolic complication. Use of a fine titanium mesh-covered inflow cannula is expected to prevent such thrombus formation by inducing neointimal tissue around the cannula. Methods Titanium pins (20 mm long, 3 mm diameter) covered with a fine titanium mesh (wire dia. 85 μm; volumetric porosity 40–70%) were developed to mimic the inflow cannulas of left ventricular assist devices (LVADs). Smooth-surface pins of the same size were also designed. The pins were implanted into the left ventricular apexes of rabbits. The rabbits were bled without anticoagulation for between 1 week and 1 year. The tissues around the pins were evaluated histologically. Results 28 rabbits (mesh group, 15; smooth group, 13) were evaluated. The mesh-covered pins inhibited thrombus formation to a remarkable degree throughout the entire observation period. The tissues around the mesh-covered titanium pins appeared to be in the process of conversion from thrombus formation to granulation, resulting in the replacement of fibrotic tissue containing myofibroblasts with endothelialized and angiogenic tissue. On the surface of the mesh-covered pins, endothelial cells were arranged without platelet adhesion. The tissue formed around the smooth-surface pins was partially organized into a thrombus without angiogenesis. Conclusions The titanium-mesh surface modification prevented thrombus formation with formation of neointimal tissue with endothelialization and angiogenesis. This surface modification could prevent wedge thrombus formation among patients supported by LVADs.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3