Renal Function Replacement by Hemodialysis: Forty-Year Anniversary and a Glimpse into the Future at Hand

Author:

Catapano Gerardo1,Buscaroli Andrea2

Affiliation:

1. Department of Environmental and Chemical Engineering, University of Calabria, Rende - Italy

2. Nephrology and Dialysis Unit, Local Health Authority of Romagna, Ravenna - Italy

Abstract

From its introduction in 1943 and until the late 1970s, hemodialysis (HD) has been a lengthy and cumbersome treatment administered by a few skilled physicians and technicians to a very limited number of terminal kidney patients. The technological innovations introduced over the years made HD a treatment administered and supervised by nursing personnel to a very large numbers of kidney patients, hopefully until recovery of kidney functions or kidney transplantation. In 2013, it is estimated that 2.250.00 kidney patients were treated worldwide, and their number is steadily increasing. Shortage of transplant kidneys and quality of current treatments has contributed to increasing the survival of HD patients. Today, it is not unusual to find patients who have been on HD for longer than twenty years. All this generated the feeling that performance of membranes and dialysis technology has reached its limit. Recently, the increasing economic burden of healthcare caused by people ageing and the increasing incidence of degenerative diseases (e.g. diabetes and cardiovascular diseases), and the economic crisis has pushed many governments and health insurances to cut resources for healthcare. The main consequence is that investments in research and development in HD have been significantly reduced. The question is whether there is indeed no need for innovation in HD. In this paper, it is discussed how the paradigm of HD has changed and what possibly are now the drivers for innovation in HD. A few ideas are proposed that could be developed by adapting existing technologies to the future needs of HD.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3