An Experimental-Numerical Investigation on the Effects of Macroporous Scaffold Geometry on Cell Culture Parameters

Author:

Eghbali Hadis1,Nava Michele M.2,Leonardi Gabriella2,Mohebbi-Kalhori Davod1,Sebastiano Roberto2,Samimi Abdolreza1,Raimondi Manuela T.2

Affiliation:

1. Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan - Iran

2. Giulio Natta Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan - Italy

Abstract

Introduction Perfused bioreactors have been demonstrated to be effective in the delivery of nutrients and in the removal of waste products to and from the interior of cell-populated three-dimensional scaffolds. In this paper, a perfused bioreactor hosting a macroporous scaffold provided with a channel is used to investigate transport phenomena and culture parameters on cell growth. Methods MG63 human osteosarcoma cells were seeded on macroporous poly(ε-caprolactone) scaffolds provided with a channel. The scaffolds were cultured in a perfused bioreactor and in static conditions for 5 days. Cell viability and growth were assessed while the concentration of oxygen, glucose and lactate were measured. An in silico, multiphysics, numerical model was set up to study the fluid dynamics and the mass transport of the nutrients in the perfused bioreactor hosting different scaffold geometries. Results The experimental and numerical results indicated that the specific cell metabolic activity in scaffolds cultured under perfusion was 30% greater than scaffolds cultured under static conditions. In addition, the scaffold provided with a channel enabled the shear stress to be controlled, the initial seeding density to be retained, and adequate mass transport and waste removal. Conclusions We show that the macroporous scaffold provided with a channel cultured in a macroscale bioreactor can be a robust reference experimental model system to systematically investigate and assess crucial culture parameters. We also show that such an experimental model system can be employed as a simplified “representative unit” to improve the performance of both perfused culture systems and hollow, fiber-integrated scaffolds for large-scale tissue engineering.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3