Affiliation:
1. Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan - Iran
2. Giulio Natta Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan - Italy
Abstract
Introduction Perfused bioreactors have been demonstrated to be effective in the delivery of nutrients and in the removal of waste products to and from the interior of cell-populated three-dimensional scaffolds. In this paper, a perfused bioreactor hosting a macroporous scaffold provided with a channel is used to investigate transport phenomena and culture parameters on cell growth. Methods MG63 human osteosarcoma cells were seeded on macroporous poly(ε-caprolactone) scaffolds provided with a channel. The scaffolds were cultured in a perfused bioreactor and in static conditions for 5 days. Cell viability and growth were assessed while the concentration of oxygen, glucose and lactate were measured. An in silico, multiphysics, numerical model was set up to study the fluid dynamics and the mass transport of the nutrients in the perfused bioreactor hosting different scaffold geometries. Results The experimental and numerical results indicated that the specific cell metabolic activity in scaffolds cultured under perfusion was 30% greater than scaffolds cultured under static conditions. In addition, the scaffold provided with a channel enabled the shear stress to be controlled, the initial seeding density to be retained, and adequate mass transport and waste removal. Conclusions We show that the macroporous scaffold provided with a channel cultured in a macroscale bioreactor can be a robust reference experimental model system to systematically investigate and assess crucial culture parameters. We also show that such an experimental model system can be employed as a simplified “representative unit” to improve the performance of both perfused culture systems and hollow, fiber-integrated scaffolds for large-scale tissue engineering.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献