Optimizing the Fluidized Bed Bioreactor as an External Bioartificial Liver

Author:

Figaro Sarah12,Pereira Ulysse1,Rada Hiram2,Semenzato Nicolas2,Pouchoulin Dominique2,Paullier Patrick1,Dufresne Murielle1,Legallais Cécile1

Affiliation:

1. UMR7338, Laboratory of Biomechanics and Bioengineering, Sorbonne University, University of Technology of Compiègne, CNRS, Compiègne - France

2. Gambro Industries, Baxter, Research Center, Meyzieu - France

Abstract

Background Our team previously designed and validated a new bioartificial liver (BAL) called Suppliver based on a Prismaflex device, including fluidized bed bioreactors hosting alginate-encapsulated hepatocytes. To ensure correct fluidization within the bioreactor, the beads need to become heavier with the addition of inert glass microspheres. Methods In this study, we assessed the impact of this additional component on the bead production process, bed fluidization, mass transfer and the mechanical properties of the beads, as well as cell viability and basic metabolic function. Results A concentration of 20 mg (1% v/v) of microspheres for 15–20 million cells per milliliter of alginate solution appears to be the best configuration. The filling ratio for the beads in the bioreactors can reach 60%. Four 250-mL bioreactors represent approximately 15% of the hepatocytes in a liver, which is a reasonable target for extracorporeal liver supply. Conclusions Increasing bead density clearly maintained the performances of the fluidized bed with plasma of different compositions, without any risk of release out of the bioreactor. A 1% (v/v)-concentration of microspheres in alginate solution did not result in any alteration of the mechanical or biological behavior. This concentration can thus be applied to the production of large-scale encapsulated biomass for further use of the Suppliver setup in human scale preclinical studies.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3