Mechanical Analysis and Fabrication of a Penetrating Silicon Microprobe as an Artificial Optic Nerve Visual Prosthesis

Author:

Sui Xiaohong12,Han Zhaolong132,Zhou Dai3,Ren Qiushi4

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai - China

2. Xiaohong Sui and Zhaolong Han contributed equally to the present work

3. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai - China

4. Department of Biomedical Engineering, College of Engineering, Peking University, Peking - China

Abstract

Purpose To investigate the mechanical response of a silicon microprobe while it penetrates the optic nerve. Methods The finite element method was adopted to analyze models of the mechanical aspects of the silicon microprobe, including the effects of dimensions, the buckling load, lateral load, and the interaction between the microprobe and the tissue of the optic nerve. The silicon microprobe was fabricated based on silicon-on-insulator (SOI) wafer by micro-electro-mechanical system (MEMS) processing techniques. Results The designed microprobe shank was 750 μm long and 110 μm wide with thickness of 15 μm. Lateral barbs were included so as to decrease the stress at stimulating-site regions. The microprobe could withstand a 50 MPa vertical load on the shank tip before buckling, but was more likely to be damaged by a lateral load rather than a vertical one. The silicon microprobe was successfully fabricated by MEMS processing techniques based on a four-inch SOI wafer. Mechanical analysis of the interactions between shank and optic nerve tissue showed that the maximum stress changed during the process of the microprobe insertion. Conclusions A silicon microprobe was designed as a potential visual prosthesis to be used for optic nerve stimulation. The mechanical issues were analyzed by means of the finite element method, and the implantable microprobe was fabricated based on a silicon-on-insulator wafer to maintain a uniform thickness.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision enhancement systems;Principles of Tissue Engineering;2020

2. Sehprothesen;Spektrum der Augenheilkunde;2016-06

3. Sehprothesen;Der Ophthalmologe;2016-01-22

4. Vision Enhancement Systems;Principles of Tissue Engineering;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3