In Vitro Benchmark of Cytokine Removal by Dialyzers with Various Permeability Profiles

Author:

Hulko Michael1,Speidel Rose1,Gauss Julia1,Storr Markus1,Krause Bernd1

Affiliation:

1. Baxter International Inc., Dialyzer/Filter R&D, Hechingen - Germany

Abstract

Purpose Removal of cytokines is relevant for dialysis patients as they are suspected to promote cardiovascular complications. The objective of this study was to benchmark membranes with different permeability profiles under standardized in vitro test conditions using miniaturized devices with respect to their ability to remove cytokines from human serum and to lower cell activating potential. Methods In vitro dialysis was used to dialyze cytokine enriched serum in 3 independent experiments per tested membrane. IL-6 in the serum and dialysate was measured at defined times by enzyme-linked immunosorbent assay. IL-8, IL-1β, IL-6 and TNF-α in dialysate were measured by immunoassay. Dialysate samples were subjected to cultured tubular epithelial cells or human fibroblasts to study cell activation via IL-6 generation. Dialysate samples were added to human whole blood with subsequent analysis of granulocyte and monocyte activation by detection of CD11b. Results IL-6 decreased in serum and increased in dialysate during in vitro dialysis. IL-8, IL-1β, and TNF-α were identified in dialysate. Dialysate added to cell cultures increased IL-6 concentration in culture medium or increased expression of CD11b. High cut-off membranes showed the strongest transfer of cytokines, albumin and total proteins from serum to dialysate and led to strongest cell activation. This effect was lower for medium cutoff membranes and lowest for conventional high-flux membranes. Conclusions This study demonstrated an in vitro test by which membranes were benchmarked with respect to cytokine and cell activation removal capacity. Cell activation levels could be influenced by the choice of membrane by altering cytokine concentration levels.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3