In Vitro Performance Investigation of SynCardia™ Freedom® Driver via Patient Simulator Mock Loop

Author:

Toninato Riccardo1,Scuri Silvia2,Tarzia Vincenzo3,Gerosa Gino3,Susin Francesca M.1

Affiliation:

1. Cardiovascular Fluid Dynamics Laboratory HER, Department of Civil, Environmental and Architectural Engineering - DICEA, University of Padua, Padua - Italy

2. Padua Heart Project, Division of Cardiac Surgery, A.O. of Padua, Padua - Italy

3. Division of Cardiac Surgery, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padua - Italy

Abstract

Purpose The gold standard therapy for patients with advanced heart failure is heart transplant. The gap between donors and patients in waiting lists promoted the development of circulatory support devices, such as the total artificial heart (TAH). Focusing on in vitro tests performed with CardioWest TAH (CW) driven by the SynCardia Freedom® portable driver (FD) the present study goals are: i) prove the reliability of a hydraulic circuit used as patient simulator to replicate a quasi-physiological scenario for various hydrodynamic conditions, ii) investigate the hydrodynamic performance of the CW FD, iii) help clinicians in possible interpretation of clinical cases outcomes. Methods In vitro tests were performed using a mechanic-hydraulic patient simulator. Cardiac output (CO), CW ventricles filling, atrial, ventricles, aortic and pulmonary artery pressures were measured for different values of vascular resistance in both systemic (SVR) and pulmonary (PVR) physiological range. Results After increasing the PVR, the left atrial pressure decreased according to the expected physiological trend, while aortic pressure remained almost stable, proving the ability of the simulator to mimic a physiological scenario. Unexpectedly, the mean pulmonary artery pressure (P) was found to increase above 30 mmHg in the range of physiological PVR (2.6 WU) and for constant CO. Conclusions The increase in PPA is probably associated with the pre-set driving setup of the FD. The finding suggests a possible explanation of the clinical course of a patient who experienced complications soon after being supported by the FD, with the occurrence of dyspnea and pulmonary edema despite a high cardiac index.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3