Design and Evaluation of a Hybrid Mock Circulatory Loop for total Artificial Heart Testing

Author:

Cuenca-Navalon Elena1,Finocchiaro Thomas1,Laumen Marco1,Fritschi Andreas1,Schmitz-Rode Thomas1,Steinseifer Ulrich1

Affiliation:

1. Department of Cardiovascular Engineering, Institute for Applied Medical Engineering, RWTH Aachen University, Aachen - Germany

Abstract

Aims A hybrid mock circulatory loop (MCL) was developed for total artificial heart (TAH) performance evaluation. The hybrid MCL consists of hydraulic hardware components and a software computer model. Design The hydraulic components are divided into the systemic and pulmonary circulation, each of which includes electrically controlled compliances, resistors, and a venous volume which can be adjusted for a wide range of physiological and pathological conditions. The software model simulates the baroreflex autoregulatory response by automatically adjusting the hydraulic parameters according to changes of condition in the MCL. Results The experimental results demonstrated a good representation of the human cardiovascular system and the capability of real-time variation of physiological and pathological conditions. The functionality of the baroreflex autoregulatory mechanism was evaluated by simulation of a postural change. Conclusions The hybrid MCL that we developed allows variable and continuous in vitro evaluation of mechanical circulatory support devices in TAH configuration and particularly their control algorithms in response to various cardiovascular conditions. The system has been built in a modular configuration to allow testing of different types of devices and thus provides a valuable test platform prior to animal experiments.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3