Steady and Transient Flow Analysis of a Magnetically Levitated Pediatric VAD: Time Varying Boundary Conditions

Author:

Throckmorton Amy L.1,Tahir Sharjeel A.1,Lopes Sydnee P.1,Rangus Owen M.1,Sciolino Michael G.1

Affiliation:

1. BioCirc Research Laboratory, Department of Mechanical & Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA - USA

Abstract

A magnetically levitated impeller within a pediatric ventricular assist device operates under highly transient flow conditions. In this study, computational analyses were performed to investigate the hydraulic performance and fluid forces on the impeller under the steady and dynamic flow conditions, including: 1) time-varying boundary conditions (TVBC) considering a pulsed pump flow rate and pulsed left ventricular pressure; 2) transient rotational sliding interfaces (TRSI) to capture virtual blade rotation. Under steady flow conditions, the pressure generation for 0.5-6 l/min over 6000-10000 rpm was 20-140 mmHg; experimental validation agreed to within 6-27%. Under transient flow conditions, the outflow pressure of the pump increased with higher inlet pressure during the TVBC simulation. During TVBC, the pressure rise across the pump decreased as a function of higher flow rates and increased as a function of lower flow rates. The radial fluid forces varied directly with the flow rate by demonstrating larger forces at higher flow rates. For TRSI simulations, pressure fluctuations due the blade passage frequency were found to have 12 peaks per revolution, having magnitude ranges of 0.7 and 1.0 mmHg for 8 000 and 10 000 rpm, respectively. At 8 000 rpm, the fluid forces ranged from 1.15-1.17 N (axial) and 0.02-0.11 N (radial). Transient simulations model implant scenarios more realistically and provide critical information about the fluid conditions in the pump.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3