Microcarrier-based Expansion Process for hMSCs with High Vitality and Undifferentiated Characteristics

Author:

Elseberg Christiane L.1,Leber Jasmin1,Salzig Denise1,Wallrapp Christine2,Kassem Moustapha34,Kraume Matthias5,Czermak Peter16

Affiliation:

1. Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen - Germany

2. CellMed AG, Alzenau - Germany

3. Department of Endocrinology and Metabolism, University Hospital of Odense, Odense - Denmark

4. Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh - Kingdom of Saudi Arabia

5. Department of Chemical Engineering, University of Technology Berlin, Berlin - Germany

6. Department of Chemical Engineering, Kansas State University, Manhattan, Kansas - USA

Abstract

For cell therapy, a high biomass of human mesenchymal stem cells (hMSCs) is required for clinical applications, such as in the form of encapsulated implants. An easy and reproducible microcarrier-based stirred tank reactor cultivation process for hMSCs in 1.68 L scale is described. To avoid medium changes, studies comparing high-glucose DMEM (DMEM-HG) with low-glucose EMEM were performed showing that high-glucose medium has positive effects on cell proliferation and that cell differentiability remains. Studies on the inoculation strategy and cell density, carrier concentration, volume, and stirrer speed were performed and resulted in a set of optimized parameters, inoculation strategy was found to be 45 minutes of static state and 2 minutes of stirring repeated in 4 cycles. The inoculation density was chosen to be 7×103 cells/cm2, and the carrier concentration of glass surface carrier was 25 g/L. For the described reactor system, a stirrer speed of 120 rpm for the inoculation process and a daily increase of 10 rpm up to 160 rpm were found to be suitable. Process reproducibility was shown by 3 repeated cultivations at the determined set of parameters allowing high biomass values of up to 7×108 cells per batch. With DMEM-HG, no limitation of glucose was found, and lactate and ammonia remained lower than critical inhibitory concentrations. Comparison of the static (T-flask) and dynamic cultures in the stirred tank reactor showed for both cases, that cells were of high vitality and both maintained differentiability. In both cases, encapsulation of the cells resulted in high bead vitality, a basic requirement for cell therapy application.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3