Effect of Different Intermediary Bases on Microleakage of a Restorative Material in Class II Box Cavities of Primary Teeth

Author:

Abdelmegid Faika Y.1,Salama Fouad S.2,Al-Mutairi Waleed M.3,Al-Mutairi Saud K.3,Baghazal Sultan O.3

Affiliation:

1. Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh - Kingdom of Saudi Arabia

2. Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh - Kingdom of Saudi Arabia

3. College of Dentistry, King Saud University Riyadh - Kingdom of Saudi Arabia

Abstract

Introduction The aim of this in vitro study was to assess and compare the effect of different intermediary bases on microleakage between tooth and a nanocomposite interface in Class II box cavities in primary teeth. Methods Standard Class II box cavities were prepared in 52 primary molars and randomly divided into 9 groups according to the intermediary base used (Multicore Flow, Fuji II LC, SDR, Smart Dentin Replacement, and Biodentine). All specimens were subjected to thermocycling and prepared for microleakage testing and evaluation. Results There was significant difference in the mean ranks of microleakage between the 9 groups, which was observed in the gingival side (p<0.0001) and the occlusal side (p<0.0001). The mean ranks microleakage was significantly higher with experimental SDR, experimental Multicore Flow, and positive control materials when compared with the other 6 groups. The microleakage mean ranks were statistically significantly lower in experimental Fuji II LC, experimental Biodentine, and all negative control groups when compared with the other 3 groups. Conclusions Microleakage is affected by the application of intermediate material. Experimental Biodentine and Fuji II LC showed the lowest microleakage while experimental SDR and experimental Multicore Flow showed the highest microleakage.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3