Measurement of in vitro and in vivo Stent Geometry and Deformation by Means of 3D Imaging and Stereo-Photogrammetry

Author:

Zwierzak Iwona12,Cosentino Daria34,Narracott Andrew J.12,Bonhoeffer Philipp5,Diaz Vanessa3,Fenner John W.12,Schievano Silvia4

Affiliation:

1. Medical Physics Group, Department of Cardiovascular Science, University of Sheffield, Sheffield - UK

2. Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield - UK

3. Department of Mechanical Engineering, University College London, London - UK

4. Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science & Great Ormond Street Hospital for Children, London - UK

5. Fondazione G. Monasterio, CNR - Regione Toscana, Pisa - Italy

Abstract

Purpose To quantify variability of in vitro and in vivo measurement of 3D device geometry using 3D and biplanar imaging. Methods Comparison of stent reconstruction is reported for in vitro coronary stent deployment (using micro-CT and optical stereo-photogrammetry) and in vivo pulmonary valve stent deformation (using 4DCT and biplanar fluoroscopy). Coronary stent strut length and inter-strut angle were compared in the fully deployed configuration. Local (inter-strut angle) and global (dog-boning ratio) measures of stent deformation were reported during stent deployment. Pulmonary valve stent geometry was assessed throughout the cardiac cycle by reconstruction of stent geometry and measurement of stent diameter. Results Good agreement was obtained between methods for assessment of coronary stent geometry with maximum disagreement of+/- 0.03 mm (length) and +/- 3 degrees (angle). The stent underwent large, non-uniform, local deformations during balloon inflation, which did not always correlate with changes in stent diameter. Three-dimensional reconstruction of the pulmonary valve stent was feasible for all frames of the fluoroscopy and for 4DCT images, with good correlation between the diameters calculated from the two methods. The largest compression of the stent during the cardiac cycle was 6.98% measured from fluoroscopy and 7.92% from 4DCT, both in the most distal ring. Conclusions Quantitative assessment of stent geometry reconstructed from biplanar imaging methods in vitro and in vivo has shown good agreement with geometry reconstructed from 3D techniques. As a result of their short image acquisition time, biplanar methods may have significant advantages in the measurement of dynamic 3D stent deformation.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3