Cell-Seeded Extracellular Matrices for Bladder Reconstruction: An ex vivo Comparative Study of their Biomechanical Properties

Author:

Davis Niall F.12,Mooney Rory2,Piterina Anna V.2,Callanan Anthony,Flood Hugh D.1,McGloughlin Tim M.2

Affiliation:

1. Department of Urology, Mid-Western Regional Hospital, Limerick - Ireland

2. Centre for Applied Biomedical Engineering Research, Department of Mechanical and Aeronautical Engineering and MSSI, University of Limerick, Limerick - Ireland

Abstract

Purpose Autogenous ileal tissue remains the gold-standard biomaterial for bladder replacement purposes; however, cell-seeded extracellular matrix (ECM) scaffolds have shown promise. Although the biological advantages of cell-seeded ECMs in urological settings are well documented, there is a paucity of data available on their biomechanical properties. In this study, the biomechanical properties of cell-seeded ECMs are compared with autogenous ileal tissue. Methods Human urothelial cells (UCs) and smooth muscle cells (SMCs) were obtained by bladder biopsy and cultured onto porcine urinary bladder matrix (UBM) scaffolds under dynamic and static growth conditions for 14 days. The biomechanical properties of cell-seeded UBM (n = 12), and porcine ileum (n = 12) were determined with uni-axial tensile testing protocols and compared with stress-strain curves. In addition, their biomechanical properties were compared with porcine bladder tissue (n = 12) and unseeded UBM (n = 12). Results There were significant differences in the biomechanical properties of each biomaterial assessed. Strain to failure occurred at 92 ± 24% for dynamically cultured cell-seeded UBM compared to 42.2 ± 5.20% for ileal tissue (p<0.01). Values for linear stiffness at 30% strain were significantly lower in dynamically cultured cell-seeded UBM compared to ileal tissue (0.36 ± 0.14 MPa versus 0.67 ± 0.32 MPa respectively, p<0.01). Bladder tissue remained the most distensible biomaterial throughout, with linear stiffness measuring 0.066 ± 0.034 MPa at 30% strain. Conclusions Dynamically cultured cell-seeded ECMs are biomechanically superior to ileal tissue for bladder replacement purposes. Additional comparative in vivo studies will be necessary before their role as a reliable alternative is clearly established.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3