Affiliation:
1. Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen - The Netherlands
2. Department of Orthopedic Surgery, University Medical Center Groningen and University of Groningen, Groningen - The Netherlands
Abstract
Purpose In the last decades, hip prostheses with a metal-on-metal (MOM) bearing have been implanted by orthopedic surgeons worldwide. However, concerns are now raised towards the metal particles and degradation products released by MOM-bearings into surrounding tissue, although effects of Co-Cr wear on infection are also unknown. Therefore, we here determine the viable volumes of staphylococcal biofilms formed on polystyrene in the absence and presence of Co-Cr particles and Co-Cr ions. Methods Three clinically derived and two commercially available staphylococcal strains were grown in the presence of 2 mg/mL Co-Cr particles or 1000/500 μg/L Co-Cr ions derived from Co-Cr salts or from particle supernatant, under static and dynamic growth conditions. A dynamic model simulates the conditions that apply for biofilm formation in the human body, as synovial fluid in mobile patients with hip prostheses is in constant motion with accompanying shear rates. Images of 24 h old biofilms were made with confocal laser scanning microscopy and analyzed with the mathematical computer program COMSTAT, yielding the biovolume of a biofilm. X-ray photoelectron spectroscopy was performed on the particles to study their elemental surface composition. Results Most isolates showed a tendency of reduced biofilm growth in the presence of Co-Cr particles compared to growth during exposure to metal ions, but this was only significant in one strain under the dynamic growth condition (Staphylococcus aureus 7388). Characterization of the outer surface of the particles revealed a Co-Cr oxide layer enriched by Mo relative to the bulk concentration. Conclusions MOM bearings produce metal particles which were found to possess antibacterial characteristics under dynamic growth conditions. Further research is needed towards the clinical relevance of this finding.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献