Time-Dependent Adhesive Interaction of Osteoblastic Cells with Polished Titanium Alloyed Implant Surfaces

Author:

Fritsche Andreas1,Luethen Frank2,Lembke Ulrich3,Zietz Carmen1,Rychly Joachim2,Mittelmeier Wolfram1,Bader Rainer1

Affiliation:

1. Department of Orthopedics, University of Rostock, Rostock - Germany

2. Department of Cell Biology, University of Rostock, Rostock - Germany

3. DOT GmbH, Rostock - Germany

Abstract

Aim Design optimization and surface modifications of orthopedic implants are focused on adhesive properties depending on specific applications. To obtain an in vitro understanding of the adhesion interaction of bone cells on implant surfaces the time-dependent adhesion behavior of osteoblastic cells was studied. Materials and Methods MG-63 osteoblastic cells were seeded on discs of polished titanium alloy (Ti6Al4V) and allowed to adhere for various time periods (1 to 48 h). Using a spinning disc device and a confocal laser scanning microscope (LSM) the shear stress required to detach the bone cells from the substrate was determined. An approximation of the adhesion force was calculated from measurements of cell height and contact radius. Results Shear stress ranged from 40.4 N/m2 to 82.4 N/m2 showing an increase in cell adhesion reaching a maximum after 6 h before decreasing significantly. Using the cell height and contact radii, measured for the various time periods, the lowest adhesion force of 232 nN was approximated after 1 h cell adhesion and analogous to the adhesion strength measurements, the highest of 664 nN after 6 h. Generally, cell adhesion decreased at incubation times longer than 6 h before an increase after 48 h was observed once again. Conclusions differences in adhesion behavior over time indicate dynamic cell-substrate interactions because of cell migration and proliferation processes. The study stresses the importance of calculating the adhesion force rather than shear stress to gain more expressive data regarding cell adhesion.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3