Enhanced Proliferation and Differentiation Effects of a CGRP- and Sr-Enriched Calcium Phosphate Cement on Bone Mesenchymal Stem Cells

Author:

Liang Wei1,Li Li2,Cui Xu3,Tang Zhongfei1,Wei Xiaomou1,Pan Haobo3,Li Bing1

Affiliation:

1. Fourth Affiliated Hospital, Guangxi Medical University, Guangxi - PR China

2. Guangxi Medical University, Guangxi - PR China

3. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen - PR China

Abstract

Introduction Because of its good osteoconductivity, strontium (Sr) ranelate has been extensively used as a bone substitute for the treatment of bone disorders. To facilitate treatment, Sr is also incorporated into calcium phosphate cement (Sr-CPC); however, the Sr from Sr-CPC is not sufficient to induce a significant increase of bone mass in an ovariectomized rat model. To improve the efficiency of Sr-CPC, we developed a calcitonin gene–related peptide (CGRP)- and Sr-enriched CPC (CGRP-Sr-CPC). Methods We used X-ray diffraction and Fourier transform infrared spectroscopy to measure properties of CGRP-Sr-CPC. We also employed a cell proliferation assay, alkaline phosphatase (ALP) assay and real-time PCR to assess the effects of CPC implants on proliferation and differentiation of bone mesenchymal stem cells (BMSCs) from an ovariectomized rat model. Results CGRP did not change the composition, pore sizes and compressive strength of the cement body as compared with Sr-CPC. Meanwhile, CGRP-Sr-CPC did not show cell cytotoxicity to BMSCs. Further, CGRP and Sr released from CGRP-Sr-CPC significantly enhanced the cell proliferation of BMSCs and increased the activity of ALP during differentiation of BMSCs, compared with CGRP- or Sr-CPC. Moreover, CGRP-Sr-CPC significantly up-regulated the expression levels of osteogenic differentiation-related genes including Alp, Bmp2, Osteonectin and Runx2 during differentiation. Conclusions These findings demonstrate the optimized effects of CGRP- and Sr-enriched CPC in promoting proliferation and osteogenic differentiation of BMSCs, suggesting the potential ability of this novel cement to assist the formation of new bone during osteoporosis-induced bone disorders.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3