Preparation, bioactivity and mechanism of nano-hydroxyapatite/sodium alginate/chitosan bone repair material

Author:

Liao Jianguo1,Li Yanqun1,Li Haiyan1,Liu Jingxian2,Xie Yufen1,Wang Jianping3,Zhang Yongxiang1

Affiliation:

1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo - PR China

2. Faculty of Medicine, Basic Medicine, Beihua University, Jilin - PR China

3. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo - PR China

Abstract

Background: As the major inorganic component of natural bone, nano-hydroxyapatite (n-HA) on its own is limited in its use in bone repair, due to its brittleness. Chitosan (CS) and sodium alginate (SAL) are used to reduce its brittleness and tendency to degradation. However, the compressive strength of the composite is still low, and its biological performance needs further study. Methods: Nano-hydroxyapatite/sodium alginate/chitosan (n-HA/SAL/CS) composite was prepared via an in situ synthesis method. Further, we prepared the n-HA/SAL/CS self-setting bone repair material by mixing n-HA/SAL/CS powder with a curing liquid (20 wt.% citric acid). In addition, the in vitro bioactivity and cell cytotoxicity were also explored. Results: Transmission electron microscopy photos revealed that the n-HA crystals were uniformly distributed throughout the polymer matrix. Infrared IR spectroscopy indicated that the HA interacted with the COO of SAL and NH2 of CS. The compressive strength of the n-HA/SAL/CS bone cement was 34.3 MPa and matched the demands of weight-bearing bones. Soaking in vitro in simulated body fluid demonstrated that the composite material had reasonably good bioactivity, while cytotoxicity tests indicated that the n-HA/SAL/CS cement could promote cell proliferation and was biocompatible. Conclusions: Compressive strength of n-HA/SAL/CS can satisfy the needs of cancellous bone, and in vitro bioactivity and cytotoxicity tests results indicated that the n-HA/SAL/CS composite could act as an optimal bone repair material.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3