Demineralized Dentin and Enamel Matrices as Suitable Substrates for Bone Regeneration

Author:

Bono Nina1,Tarsini Paolo2,Candiani Gabriele12

Affiliation:

1. Polytechnic of Milan Research Unit, National Interuniversity Consortium of Materials Science and Technology (INSTM), Milan - Italy

2. Department of Chemistry, Materials and Chemical Engineering G. Natta, Polytechnic of Milan, Milan - Italy

Abstract

Background In recent decades, tooth derivatives such as dentin (D) and enamel (E) have been considered as potential graft biomaterials to treat bone defects. This study aimed to investigate the effects of demineralization on the physical-chemical and biological behavior of D and E. Methods Human D and E were minced into particles (Ø<1 mm), demineralized and sterilized. Thorough physical-chemical and biochemical characterizations of native and demineralized materials were performed by SEM and EDS analysis and ELISA kits to determine mineral, collagen type I and BMP-2 contents. In addition, MG63 and SAOS-2 cells were seeded on tooth-derived materials and Bio-Oss®, and a comparison of cell responses in terms of adhesion and proliferation was carried out. Results The sterilization process, as a combination of chemical and thermal treatments, was found to be effective for all materials. On the other hand, D demineralization allowed preserving the collagen content, while increasing BMP-2 bioavailability. D and demineralized D (dD) displayed excellent biocompatibility, even greater than Bio-Oss®. Conversely, the high mineral content displayed by E, as confirmed by EDS analysis, inhibited cell proliferation. Of note, even though the demineralization process was somehow less effective in E than in D, demineralized E (dE) displayed increased BMP-2 bioavailability and improved performance in vitro compared with native E. Conclusions Our results substantiate the idea that the demineralization process lead to an increase of BMP-2 bioavailability, thus paving the way toward development of more effective, osteoinductive tooth-derived materials for bone regeneration and replacement.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3