Affiliation:
1. Department of Control Science and Engineering, Jilin University, Changchun - PR China
2. Department of Orthopedic Traumatology, First Hospital of Jilin University, Changchun - PR China
Abstract
Introduction Magnetically controlled shape memory alloy (MSMA) actuators take advantages of their large deformation and high controllability. However, the intricate hysteresis nonlinearity often results in low positioning accuracy and slow actuator response. Methods In this paper, a modified Krasnosel'skii-Pokrovskii model was adopted to describe the complicated hysteresis phenomenon in the MSMA actuators. Adaptive recursive algorithm was employed to identify the density parameters of the adopted model. Subsequently, to further eliminate the hysteresis nonlinearity and improve the positioning accuracy, the model reference adaptive control method was proposed to optimize the model and inverse model compensation. Results The simulation experiments show that the model reference adaptive control adopted in the paper significantly improves the control precision of the actuators, with a maximum tracking error of 0.0072 mm. Conclusions The results prove that the model reference adaptive control method is efficient to eliminate hysteresis nonlinearity and achieves a higher positioning accuracy of the MSMA actuators.
Subject
Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献