Effects of Surfactants on the Preparation of MnO2 and its Capacitive Performance

Author:

Sun Yin1,Dang Hangfei1,Huang Naibao1,Wang Dongchao1,Liang Chenghao1

Affiliation:

1. Transportation Equipment and Ocean Engineering College, Dalian Maritime University, Dalian - China

Abstract

Amorphous hydrated manganese dioxide (MnO2) was prepared as an electrode material for supercapacitors by liquid co-precipitation in the presence of polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and sodium dodecylbenzenesulfonate (SDBS) respectively. The obtained samples were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical methods. Physical characterizations confirmed that the addition of surfactants played an important role in the preparation of MnO2. The specific surface areas of MnO2 with the addition of PEG, SDBS and PVP were 169.92 m2/g, 137.40 m2/g and 196.64 m2/g, respectively, and the corresponding capacitances were 207.9 F/g, 187.5 F/g and 238.7 F/g. Compared with the sample without surfactants, the specific surface area and capacitance of the sample with the addition of PVP were improved by 92.2% and 53.1%, respectively. Moreover, the electrode showed good cycle stability at the current density of 120 mA/g, and 91.1% of its specific capacitance still remained after 500 cycles. It was concluded that this performance improvement was attributed to the electrostatic stabilization of the multivariate alkyl residue and cyano group (—NCO) as anchoring group, as well as the steric hindrance effect from lateral polarity groups of pentabasic ring in PVP structure.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Bioengineering,Biophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3