Analysis of Gene Profiles in Glioma Cells Identifies Potential Genes, miRNAs, and Target Sites of Migratory Cells

Author:

Xue Fei1,Shen Rui1,Chen Xianzhen1

Affiliation:

1. Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai - PR China

Abstract

Aims To explore the potential molecular mechanisms involved in migratory glioma cells. Methods The gene expression profiles of GSE28167, employing human malignant glioma U251MG cells cultured on strictly aligned versus randomly oriented electrospun nanofibers of polycaprolactone, were downloaded from the Gene Expression Omnibus database. Gene differential expression analysis was carried out by the package of Gene Expression Omnibus query and limma in R language. The Gene Set Analysis Toolkit V2 was used for pathway analysis. Gene set enrichment analysis was used to screen for target sites of transcription factors, miRNA and small drug molecules. Results Totally 586 differentially expressed genes were identified and the differentially expressed genes were mainly enriched in the pathway of muscle cell TarBase, MAPK cascade, adipogenesis and epithelium TarBase. Thirty-two significant target sites of transcription factors, such as hsa_RTAAACA_V$FREAC2_01, were screened. The top 20 potential miRNAs including MIR-124A, MIR-34A and MIR-34C were screened for a constructing gene-miRNA interaction network. Small molecules that can inhibit the motility of glioma cells such as diclofenamide and valinomycin were mined. By integrating the regulatory relationships among transcription factors, miRNAs and differentially expressed genes, we found that 7 differentially expressed genes, including SOX4, ANKRD28 and CCND1, might play crucial roles in the migration of glioma cells. Conclusions The screened migration-associated genes, significant pathways, and small molecules give us new insight for the mechanism of migratory glioma cells. Interest in such genes as potential target genes in the treatment of glioblastoma justifies functional validation studies.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3