Funder
National Natural Science Foundation of China
Subject
Library and Information Sciences,Management Science and Operations Research,Computer Science Applications,Media Technology,Information Systems
Reference36 articles.
1. Robust understanding of word problems with extraneous information;Bakman,2007
2. Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., & Holtham, E. (2018). Reversible architectures for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference on artificial intelligence, Vol. 32.
3. Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Conference on empirical methods in natural language processing (pp. 1724–1734).
4. Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2019). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. In International conference on learning representations.
5. Revisiting pre-trained models for Chinese natural language processing;Cui,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献