1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In ICML ’05: Proceedings of the 22nd international conference on machine learning (pp. 89–96). New York, NY, USA: ACM.
2. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H. (2007). Learning to rank: From pairwise approach to listwise approach. In ICML ’07: Proceedings of the 24th international conference on machine learning (pp. 129–136). New York, NY, USA: ACM.
3. Chen, K.-H., Chen, H.-H., Kando, N., Kuriyama, K., Lee, S., Myaeng, S. H., et al. (2003). Overview of CLIR task at the third NTCIR workshop. NTCIR-3 Proceedings.
4. An efficient boosting algorithm for combining preferences;Freund;Journal of Machine Learning Research,2003
5. Joachims, T. (2002). Optimizing search engines using clickthrough data. In KDD ’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 133–142). New York, NY, USA: ACM.