1. Bahdanau, D., Cho, K., Bengio, Y.J.C.S., 2014. Neural Machine Translation by Jointly Learning to Align and Translate.
2. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., 2016. Interaction networks for learning about objects, relations and physics. Advances in neural information processing systems, 29.
3. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., Pascanu, R., 2018. Relational inductive biases, deep learning, and graph networks.
4. Geometric Deep Learning: Going beyond Euclidean data;Bronstein;IEEE Signal Process Mag.,2017
5. Chang, M.B., Ullman, T., Torralba, A., Tenenbaum, J.B., 2016. A compositional object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341.