A numerical study of new fractional model for convective straight fin using fractional-order Legendre functions
Author:
Publisher
Elsevier BV
Subject
General Mathematics,General Physics and Astronomy,Statistical and Nonlinear Physics,Applied Mathematics
Reference33 articles.
1. Analytical solution of fourier and non-fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition;Singh;International Journal of Thermal Sciences,2018
2. Optimization analysis of convective radiative longitudinal fins with temperature-dependent properties and different section shapes and materials;Mosayebidorcheh;Energy Conservation and Management,2015
3. Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method;Ghasemi;J of Central South University,2014
4. Refrigeration efficient analysis for fully wet semi-spherical porous fins;Hatami;Energy Conservation and Management,2014
5. Optimization of finned tube heat exchanger for diesel exhaust waste heat recovery using CFD and CCD technique;Hatami;Int Commonin heat and mass transfer,2015
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Numerical analysis of DPL bioheat transfer model with nonlocal impact on skin tissue during hyperthermia;International Communications in Heat and Mass Transfer;2023-12
2. Genocchi polynomials for variable-order time fractional Fornberg–Whitham type equations;Partial Differential Equations in Applied Mathematics;2023-12
3. Taylor–Galerkin–Legendre-wavelet approach to the analysis of a moving fin with size-dependent thermal conductivity and temperature-dependent internal heat generation;Journal of Thermal Analysis and Calorimetry;2023-11
4. A hybrid method based on the Chebyshev cardinal functions/wavelets for time fractional coupled Klein–Gordon–Schrödinger equations;Journal of Computational and Applied Mathematics;2023-08
5. A computational approach based on the fractional Euler functions and Chebyshev cardinal functions for distributed-order time fractional 2D diffusion equation;Alexandria Engineering Journal;2023-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3