1. Predictive models for concrete properties using machine learning and deep learning approaches: a review;Mohtasham Moein;J. Build. Eng.,2023
2. D.E. Dixon, Secretary, G.R.U. Burg, E.A. Abdun-Nur, S.G. Barton, L.W. Bell, S.J. Blas, Ramon, Carrasquillo, P.M. Carrasquillo, A.C. Carter, M.T. Conrey, J.E. Cook, R.A. Cook, W.A. Cordon, W.J. Costa, E.A. Abdun-Nurt, W.L. Barringer-t, J.E. Bennett, James, E., Cook-t, R.A. Cook, D.A. Crocker, K.W. Day, C.L. Dodl, T.A. Fox, D.A. Graham, G.W. Hollon, W.W. Hotaling, R.S. Jenkins, P.C. Klieger, F.J. Lahm, S.H. Lee, G.R. Mass, M.A. Mearing, RichardC.Meininger, R.W. Narva, L.P. Nicholson, J.E. Oliverson, J.S. Pierce, S. Popovics, S.A. Ragan, H.C. Robinson, J.H. Rose, J.A. Scherocman, J.M. Shilstone, L.H. Diaz, D.E. Dixont, T.M. Jaber, S.M. Lane, R.C. Meiningert, J. Roget, D.L. Schlegel, M.S. Williams, J.R. Wilson, G.B. Southworth, A.B. Spamer, P.R. Stodola, M.A. Taylor, S.J. Vigalitte, W.H. Voelker, J.W. Weber, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete ( ACI 211. 191) Reported by ACI Committee 211, 1997.
3. Determining the mix design method for normal strength concrete using machine learning;Alghamdi;J. Umm Al-Qura Univ. Eng. Archit.,2023
4. Principles underlying production of high-performance concrete;Mehta;Cem. Concr. Aggreg.,1990
5. The mix design for self-compacting high performance concrete containing various mineral admixtures;Le;Mater. Des.,2015