Unraveling charge transfer pathways and mechanisms in visible-light-responsive Bi4O5I2/GO/Bi2Sn2O7 all-solid-state Z-scheme heterojunction photocatalysts for high-efficiency antibiotic degradation
Author:
Publisher
Elsevier BV
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Reference73 articles.
1. Health and environmental effects of persistent organic pollutants;Alharbi;J. Mol. Liq.,2018
2. Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy;Spataro;Microchem. J.,2019
3. Bacterial antibiotic resistance in municipal wastewater treatment plant; mechanism and its impacts on human health and economy;Soni;Bioresour. Technol. Rep.,2022
4. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics;Pan;Sep. Purif. Technol.,2022
5. Modified tri–axial electrospun functional core–shell nanofibrous membranes for natural photodegradation of antibiotics;Zhao;Chem. Eng. J.,2021
Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel Bi12O17Cl2/GO/Co3O4 Z-type heterojunction photocatalyst with ZIF-67 derivative modified for highly efficient degradation of antibiotics under visible light;Journal of Colloid and Interface Science;2025-01
2. Bi0/I− co-modified BiOIO3/Bi2WO6 Z-scheme heterojunction catalysts for degradation of antibiotics under visible light: Mechanism, optimization and pathway;Separation and Purification Technology;2025-01
3. Construction of novel BiOI/CuInS2/ZnO dual S-scheme charge transfer pathway for efficient antibiotic degradation;Journal of Physics and Chemistry of Solids;2024-12
4. Oxygen vacancies and Y-O-Ag bonds in the Z-scheme heterojunction cooperate to promote photodegradation of organic pollutants;Journal of Colloid and Interface Science;2024-11
5. Synthesis of double Z-type heterojunction AgI/Ag6Si2O7/BiOI photocatalyst for antibiotics degradation and weakening toxicity;Journal of Environmental Chemical Engineering;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3