Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
Author:
Publisher
Elsevier BV
Subject
General Materials Science,Building and Construction
Reference91 articles.
1. Prediction of self-compacting concrete strength using artificial neural networks;Asteris;Eur. J. Environ. Civ. Eng.,2016
2. Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete;Nochaiya;Fuel,2010
3. Modification of ordinary concrete using fly ash from combustion of municipal sewage sludge;Rutkowska;Materials,2020
4. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic;Topçu;Comput. Mater. Sci.,2008
5. Industrially interesting approaches to “low-CO2” cements;Gartner;Cem. Concr. Res.,2004
Cited by 321 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning for predicting compressive strength of sustainable cement paste incorporating copper mine tailings as supplementary cementitious materials;Case Studies in Construction Materials;2024-12
2. Intelligent prediction of comprehensive mechanical properties of recycled aggregate concrete with supplementary cementitious materials using hybrid machine learning algorithms;Case Studies in Construction Materials;2024-12
3. A new understanding of the alkali-silica reaction expansion in concrete using a hybrid ensemble model;Journal of Building Engineering;2024-11
4. Active control vibrations of aircraft wings under dynamic loading: Introducing PSO-GWO algorithm to predict dynamical information;Aerospace Science and Technology;2024-10
5. Hybrid ensemble paradigms for estimating tunnel boring machine penetration rate for the 10-km long Bahce-Nurdagi twin tunnels;Engineering Applications of Artificial Intelligence;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3