Efficient Heart Disease Prediction Using Hybrid Deep Learning Classification Models

Author:

Baviskar Vaishali,Verma Madhushi,Chatterjee Pradeep,Singal GauravORCID

Publisher

Elsevier BV

Subject

Biomedical Engineering,Biophysics

Reference40 articles.

1. Heart disease prediction and classification using machine learning algorithms optimized by particle swarm optimization and ant colony optimization;Khourdifi;Int J Intell Eng Syst,2019

2. An optimized feature selection based on genetic approach and support vector machine for heart disease;Babu;Clust Comput,2019

3. A hybrid classification system for heart disease diagnosis based on the rfrs method;Liu;Comput Math Methods Med,2017

4. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques;Latha;Inform Med Unlocked,2019

5. Improved salp swarm algorithm based on particle swarm optimization for feature selection;Ibrahim;J Ambient Intell Humaniz Comput,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of deep learning-based models for heart disease prediction;Artificial Intelligence Review;2024-08-19

2. Recent advancements and applications of deep learning in heart failure: Α systematic review;Computers in Biology and Medicine;2024-06

3. Analyzing Bi-directional LSTM Networks for Cardiac Arrest Risk Assessments;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

4. NayanCom - A Smart Patient Communication System;2023 26th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA);2023-12-04

5. Advanced Machine Learning for Risk Assessment of Cardiovascular Disease;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3