Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials

Author:

Zhou Lian,Wang Guo-Jin

Publisher

Elsevier BV

Subject

Computer Graphics and Computer-Aided Design,Aerospace Engineering,Automotive Engineering,Modelling and Simulation

Reference16 articles.

1. Polynomial and Polynomial Inequalities;Borwein,1995

2. Interpolation method for degree reduction of parametric surfaces over rectangles;Chen;Numerical Mathematics A Journal of Chinese Universities (Computational Geometry),1993

3. Multi-degree reduction of tensor product Bézier surfaces with conditions of corners interpolations;Chen;Science in China, Series F,2002

4. Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity;Chen;Computer Aided Geometric Design,2002

5. Degree reduction of Bézier surfaces;Eck,1994

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement on constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials;Computer Aided Geometric Design;2018-03

2. Optimal multi-degree reduction of C-Bézier surfaces with constraints;Frontiers of Information Technology & Electronic Engineering;2017-12

3. Modified Jacobi–Bernstein basis transformation and its application to multi-degree reduction of Bézier curves;Journal of Computational and Applied Mathematics;2016-08

4. Constrained multi-degree reduction with respect to Jacobi norms;Computer Aided Geometric Design;2016-02

5. Explicit algorithms for multiwise merging of Bézier curves;Journal of Computational and Applied Mathematics;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3