Subject
General Computer Science,Theoretical Computer Science
Reference39 articles.
1. Sequent calculus for intuitionistic linear propositional logic;Abrusci,1990
2. Non-commutative intuitionistic linear logic;Abrusci;Zeischrift für Math. Logik und Grundlagen d. Math.,1990
3. T. Altenkirch, M. Hofmann, T. Streicher, in: David Pitt, David E. Rydeheard, Peter Johnstone (Eds.), Categorical reconstruction of a reduction free normalization proof, Category Theory and Computer Science, Lecture Notes in Computer Science, Vol. 953, 1995, pp. 182–199.
4. T. Altenkirch, P. Dybjer, M. Hofmann, P. Scott, Normalization by evaluation for typed lambda calculus with coproducts, 16th Annual IEEE Symposium on Logic in Computer Science, IEEE Press, 2001, pp. 303–310.
5. Ein ausgezeichnetes Modell für die intuitionistische Typenlogik;Buchholz;Archive for Mathematical Logic,1975
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Syntactic Completeness of Proper Display Calculi;ACM Transactions on Computational Logic;2022-10-20
2. Semantic cut elimination for the logic of bunched implications, formalized in Coq;Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs;2022-01-11
3. Logic and Majority Voting;Journal of Philosophical Logic;2021-09-01
4. Hyper-MacNeille Completions of Heyting Algebras;Studia Logica;2021-03-26
5. Constructive Decision via Redundancy-Free Proof-Search;Journal of Automated Reasoning;2020-06-24