Spectral-spatial stacked autoencoders based on low-rank and sparse matrix decomposition for hyperspectral anomaly detection

Author:

Zhao Chunhui,Zhang Lili

Funder

National Natural Science Foundation of China

Guiding Technology Project of Daqing

Publisher

Elsevier BV

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference34 articles.

1. A new band selection method for hyperspectral image based on data quality;Sun;IEEE J. Sel. Topics Appl. Earth Observ. Rem. Sens.,2014

2. A tutorial overview of anomaly detection in hyperspectral images;Matteoli;IEEE Aero. Electron. Sys. Mag.,2010

3. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution;Reed;IEEE Trans. Acous. Speech Signal Process.,1990

4. Comparative evaluation of hyperspectral anomaly detectors in different types of background, algorithms and technologies for multispectral hyperspectral and ultraspectral imagery XVIII;Borghys;Int. Soc. Opt. Photon.,2012

5. A discriminative metric learning based anomaly detection method;Du;IEEE Trans. Geosci. Remote Sens.,2014

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pixel-associated autoencoder for hyperspectral anomaly detection;International Journal of Applied Earth Observation and Geoinformation;2024-05

2. Active Fault-Tolerant Control for Nonlinear Systems With Nonlogarithmic Sensor Resolution;IEEE Transactions on Instrumentation and Measurement;2024

3. Dynamic Low-Rank and Sparse Priors Constrained Deep Autoencoders for Hyperspectral Anomaly Detection;IEEE Transactions on Instrumentation and Measurement;2024

4. CL-CaGAN: Capsule Differential Adversarial Continual Learning for Cross-Domain Hyperspectral Anomaly Detection;IEEE Transactions on Geoscience and Remote Sensing;2024

5. Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3