1. Antic J., A deep learning based project for colorizing and restoring old images, https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fjantic%2FDeOldifyn&data=04%7C01%7Ca.nagamony%40elsevier.com%7C2884257f91d84468145908d9379ef063%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637601978480969313%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=TFWIEbr%2FcLrobTq5R4PqdyjNRHHDk0DbpDT%2BDYRygCw%3D&reserved=0, 2018.
2. Arjovsky M., Chintala S., and Bottou L., Wasserstein GAN, arXiv preprint, arXiv:1701.07875, 2017.
3. PCSGAN: Perceptual cyclic-synthesized generative adversarial networks for thermal and NIR to visible image transformation;Babu;Neurocomputing,2020
4. Multi-spectral sift for scene category recognition;Brown,2011
5. Unsupervised diverse colorization via generative adversarial networks;Cao,2017