TECD_Attention: Texture-enhanced and cross-domain attention modeling for visual place recognition
-
Published:2024-03
Issue:
Volume:240
Page:103929
-
ISSN:1077-3142
-
Container-title:Computer Vision and Image Understanding
-
language:en
-
Short-container-title:Computer Vision and Image Understanding
Author:
Li Zhenyu,Dong Zhenbiao
Reference48 articles.
1. Gsv-cities: Toward appropriate supervised visual place recognition;Ali-bey;Neurocomputing,2022 2. Ali-Bey, A., Chaib-Draa, B., Giguere, P., 2023. MixVPR: Feature mixing for visual place recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 2998–3007. 3. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J., 2016. NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5297–5307. 4. Speeded-up robust features (SURF);Bay;Comput. Vis. Image Underst.,2008 5. Chen, Z., Jacobson, A., Sünderhauf, N., Upcroft, B., Liu, L., Shen, C., Milford, M., 2017. Deep learning features at scale for visual place recognition. In: IEEE International Conference on Robotics and Automation. ICRA, pp. 3223–3230.
|
|