Author:
Wang Hang,Ding Zhenyu,Cheng Cheng,Li Yuhai,Sun Hongbin
Funder
National Natural Science Foundation of China
Subject
Computer Vision and Pattern Recognition,Signal Processing,Software
Reference55 articles.
1. Agustsson, E., Timofte, R., 2017. Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW, pp. 126–135.
2. Bell-Kligler, S., Shocher, A., Irani, M., 2019. Blind super-resolution kernel estimation using an internal-gan. In: Advances in Neural Information Processing Systems. NeurIPS, pp. 284–293.
3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L., 2012. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British Machine Vision Conference. BMVC, pp. 135.1—135.10.
4. Deng, L., Guo, W., Huang, T., 2015. Single-image super-resolution via an iterative reproducing kernel Hilbert space method. In: IEEE Transactions on Circuits and Systems for Video Technology. TCSVT, pp. 2001–2014.
5. Dong, C., Loy, C., He, K., Tang, X., 2014. Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision. ECCV, pp. 184–199.