Lightning fast video anomaly detection via multi-scale adversarial distillation
-
Published:2024-10
Issue:
Volume:247
Page:104074
-
ISSN:1077-3142
-
Container-title:Computer Vision and Image Understanding
-
language:en
-
Short-container-title:Computer Vision and Image Understanding
Author:
Croitoru Florinel-Alin, Ristea Nicolae-Cătălin, Dăscălescu Dana, Ionescu Radu TudorORCID, Khan Fahad Shahbaz, Shah Mubarak
Funder
University of Bucharest
Reference94 articles.
1. Acsintoae, A., Florescu, A., Georgescu, M., Mare, T., Sumedrea, P., Ionescu, R.T., Khan, F.S., Shah, M., 2022. UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection. In: Proceedings of CVPR. pp. 20143–20153. 2. Astrid, M., Zaheer, M.Z., Lee, S.-I., 2021a. Synthetic temporal anomaly guided end-to-end video anomaly detection. In: Proceedings of ICCVW. pp. 207–214. 3. Astrid, M., Zaheer, M.Z., Lee, J.-Y., Lee, S.-I., 2021b. Learning Not to Reconstruct Anomalies. In: Proceedings of BMVC. 4. Ba, J., Caruana, R., 2014. Do deep nets really need to be deep?. In: Proceedings of NIPS. pp. 2654–2662. 5. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C., 2020. Uninformed Students: Student-Teacher Anomaly Detection With Discriminative Latent Embeddings. In: Proceedings of CVPR. pp. 4183–4192.
|
|