Conditioning diffusion models via attributes and semantic masks for face generation
-
Published:2024-07
Issue:
Volume:244
Page:104026
-
ISSN:1077-3142
-
Container-title:Computer Vision and Image Understanding
-
language:en
-
Short-container-title:Computer Vision and Image Understanding
Author:
Lisanti GiuseppeORCID, Giambi Nico
Reference44 articles.
1. Demystifying mmd gans;Bińkowski,2018 2. Choi, J., Lee, J., Shin, C., Kim, S., Kim, H., Yoon, S., 2022. Perception prioritized training of diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11472–11481. 3. Choi, Y., Uh, Y., Yoo, J., Ha, J.-W., 2020. Stargan v2: Diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8188–8197. 4. Diffusion models beat gans on image synthesis;Dhariwal;Adv. Neural Inf. Process. Syst.,2021 5. Gao, Y., Wei, F., Bao, J., Gu, S., Chen, D., Wen, F., Lian, Z., 2021. High-fidelity and arbitrary face editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 16115–16124.
|
|