1. Weed and crop discrimination using image analysis and artificial intelligence methods;Aitkenhead;Comput. Electron. Agric.,2003
2. Bangert, W., Kielhorn, A., Rahe, F., Albert, A., Biber, P., Grzonka, S., Haug, S., Michaels, A., Mentrup, D., Hänsel, M., Kinski, D., Möller, D., Ruckelshausen, A., Scholz, C., Sellmann, F., Strothmann, W., Trautz, D., 2013. Field-Robot-Based Agriculture: “RemoteFarming.1” and “BoniRob-Apps”. In: 71th conference LAND.TECHNIK-AgEng 2013, VDI Verlag GmbH, Düsseldorf, 2013, pp. 439–446. (05/21/2016).
3. Improving weed pressure assessment using digital images from an experience-based reasoning approach;Burgos-Artizzu;Comput. Electron. Agric.,2009
4. Smart detection of leaf wilting by 3D image processing and 2D Fourier transform;Cai;Comput. Electron. Agric.,2013
5. Bayesian classification and unsupervised learning for isolating weeds in row crops;De Rainville;Pattern Anal. Appl.,2014