1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. CoRR arXiv:1603.04467.
2. American Wood Protection Association, 2017. E1-17 Laboratory methods for evaluating the termite resistance of wood-based materials: choice and no-choice tests. American Wood Protection Association, Birmingham, AL.
3. Carpentier, M., Giguere, P., Gaudreault, J., 2018. Tree species identification from barks images using convolutional neural networks. Comput. Sci., Comput. Vis. Pattern Recog. arXiv:1803.00949.
4. Clausen, C.A., 2010. Biodeterioration of wood. Pages 14-1/14-16 in FPL (2010) Wood handbook – Wood as an engineered material. Gen Tech Rep FPL-GTR-190. USDA For Serv Forest Products Laboratory, Madison, WI.
5. Chollet, F., 2015. Keras. GitHub. 2015. https://github.com/fchollet/keras.