1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J,.Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems, Accessed: 25-05-2020. URL http://tensorflow.org/.
2. Anejo no 20, estudio de costes y análisis de sensibilidad del proyecto, www.juntaex.es/filescms/con03/uploaded_files/SectoresTematicos/DesarrolloRural/Regadios/RegadioArroyoDelCampo/MemoriaYAnejos/AN.20-EstudioDeCostesYAnalisisDeSensibilidad.pdf, Accessed: 08-06-2020.
3. A high-resolution, multimodal data set for agricultural robotics: A ladybird’s-eye view of brassica;Bender;J. Field Robot.,2020
4. Machine vision for a selective broccoli harvesting robot;Blok;IFAC-PapersOnLine,2016
5. The effect of data augmentation and network simplification on the image-based detection of broccoli heads with mask r-cnn;Blok;J. Field Robot.,2021