1. Chen, M., Pennington, J., Schoenholz, S.S., 2018. Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. arXiv.
2. Chen, Y., Song, L., Liu, Y., Yang, L., Li, D., 2020. A review of the artificial neural network models for water quality prediction. Appl. Sci. https://doi.org/10.3390/app10175776.
3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Eprint Arxiv.
4. Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube;Csábrági;Ecol. Eng.,2017
5. A Comparative Investigation of Mode Mixing in EEG Decomposition Using EMD, EEMD and M-EMD;Ho,2020