Investigating the effect of different fine-tuning configuration scenarios on agricultural term extraction using BERT
-
Published:2024-10
Issue:
Volume:225
Page:109268
-
ISSN:0168-1699
-
Container-title:Computers and Electronics in Agriculture
-
language:en
-
Short-container-title:Computers and Electronics in Agriculture
Author:
Panoutsopoulos HerculesORCID, Espejo-Garcia Borja, Raaijmakers Stephan, Wang Xu, Fountas Spyros, Brewster Christopher
Reference43 articles.
1. Methods for automatic term recognition in domain-specific text collections: a survey;Astrakhantsev;Progr. Comput. Softw.,2015 2. Beltagy, I., Lo, K., Cohan, A., 2019. SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676. 3. Celli, F., Keizer, J., Jaques, Y., Konstantopoulos, S., Vudragović, D., 2015. Discovering, indexing and interlinking information resources. F1000 Res., 4. 4. Chatterjee, N., Kaushik, N., 2017. RENT: Regular expression and NLP-based term extraction scheme for agricultural domain. In: Proceedings of the International Conference on Data Engineering and Communication Technology: ICDECT 2016, Volume 1, pp. 511-522. Springer Singapore. 5. Chatterjee, N., Kaushik, N., 2020. Automatic Extraction of Agriculture Terms from Domain Text: A Survey of Tools and Techniques. arXiv preprint arXiv:2009.11796.
|
|